KAVAYITRI BAHINABAI CHAUDHARI NORTH MAHARASHTRA UNIVERSITY, JALGAON

Semester-wise Code structure and Syllabus for

Faculty: Science and Technology

B. Sc (Computer Science)
(Honors/Research) Programme

As per NEP2020 for Affiliated Colleges

w.e.f. June 2024

BACHELOR OF SCIENCE in Computer Science [4-Year B.Sc. (Computer Science) as Per NEP-2020]

PROGRAMME OBJECTIVES (POs):

- 1) To develop problem solving abilities using a computer.;
- 2) To prepare necessary knowledge base for research and development in Computer Science.
- 3) To build the necessary skill set and analytical abilities for developing computer based solutions for real life problems.
- 4) Communicate scientific information in a clear and concise manner both orally and in writing. PO5
- 5) To train students in professional skills related to Software Industry
- 6) To develop logical judgment and communication skill
- 7) Augment the recent developments in the field of IT and relevant fields of Research and Development.
- 8) To Create Scientific temper among the students so that to develop the research culture

PROGRAMME SPECIFIC OUTCOMES (PSOs):

At the end of the program the graduate will be able to :

PSO No.	PSO	Cognitive
		level
BCSPSO.1	Students will able to apply knowledge of computing,	2
	software designing and development that is relevant and	
	appropriate to the problem domain.	
BCSPSO.2	Students will be able to model concepts of software	3
	application and projects.	
	Students will be able to apply current technical	3
	concepts and practices in the core development of	
	solutions in the form of Information technology	
BCSPSO.4	Aware them to publish their work in reputed journals	4
BCSPSO.5	Students will be able to critically evaluate the problem.	5
	To make them employable according to current demand	5
	of IT Industry and responsible citizen	
BCSPSO.7	Development of in-house applications in terms of	6
	projects	

Abbreviations:

- **T:** Theory Course
- **P:** Practical course
- **DSC:** Discipline Specific Core Course
- **DSE:** Discipline Specific Elective Course
- MIN: Minor subject
- VSEC: Vocational skill and Skill enhancement courses
- **VSC:** Vocational Skill Courses
- **SEC:** Skill Enhancement Courses
- **GE/OE:** Generic/open elective
- CI: Constitution of India
- **IKS:** Indian Knowledge System
- CEP: Community engagement and service
- OJT: On Job Training: Internship/ Apprenticeship
- **RP:** Research Project
- **RM:** Research methodology
- **ES**: Environment studies
- **ENG:** English
- MIL: Modern Indian language

- Co-curricular Course (CC)
 - a) CC-1: CC-120: Sports and Yoga
 - b) CC-2: CC-130: Cyber Security
 - c) CC-3: CC-220: Human Rights and Environment Law
 - d) CC-4: CC-229: Communication Skills and Personality Development
- Value Education Courses (VEC)
 - a) VEC1: ES-118: Environmental Science
 - b) VEC2: CI-129: Constitution of India
- Indian Knowledge System (IKS):
 - a) IK: 119: Ayurvedic Medicine in Ancient India
- Ability Enhancement Courses (AEC)
 - a) AEC-1: EG: 101 English -1
 - b) AEC-2: EG: 102 English -2
 - c) AEC-3: MR: 201 Marathi -1
 - d) AEC-3: HN: 201 Hindi -1
 - e) AEC-3: MR: 202 Marathi -2
 - f) AEC-3: HN: 202 Hindi -2

Subject Short Name:					
Sr	Name of Subject	Short Name			
1	Physics	PH			
2	Mathematics	MT			
3	Chemistry	СН			
4	Botany	ВО			
5	Zoology	ZO			
6	Electronics	EL			
7	Computer Science	CS			
8	Statistics	ST			
9	Microbiology	MB			
10	Biotechnology	BT			
11	Information Technology	IT			
12	Biochemistry	ВС			
13	Environmental Science	EV			
14	Geography	GG			
15	Geology	GE			

B. Sc. (Honors/Research) - First Year, SEMESTER - I, Level - 4.5 Course **Course Title** Credits Teaching Hours/ Marks (Total 100) Course Course Code Week **Type** Total Internal Т External (CA) (UA) T P T **CS-111** Essentials of Computer DSC-1 **DSC** 2 2 2 20 30 DSC-2 DSC **CS-112** C Programming 2 2 2 20 --**30** 2 DSC-3 **DSC CS-113** Lab on C Programming 4 4 20 **30** --MIN-1 MIN **CS-114** C Programming 2 **30** 2 2 20 MIN-2 MIN **CS-115** Lab on C Programming 2 4 4 20 30 --**OE-1** OE **CS-116** Word Processing Tools (Hands on) 2 2 2 20 --30 SEC-1 SEC Software and Hardware Maintenance 2 2 **CS-117** 2 --20 **30 VEC-1 VEC EA-118 Environmental Awareness** 2 2 2 20 **30** ----**IKS** 2 **IKS IK-119** Ayurvedic Medicine in 2 --2 20 30 Ancient India **CC-1** 2 **CC-120** 2 2 CC Select any ONE of the following: 50 (A/B) A) Sports B) Yoga AEC-1 2 AEC EG-101 English -1 2 30 B. Sc. (Honors/Research) - First Year, SEMESTER - II, Level - 4.5 DSC-4 DSC CS-121 Introduction To Data Science 2 2 2 **30** 20 DSC-5 DSC CS-122 2 2 2 **Vedic Mathematics** 20 30 ----2 DSC-6 DSC CS-123 Lab on Data Science 4 4 20 30 MIN-3 MIN **CS-124** Introduction To Data Science 2 2 2 20 30 MIN-4 MIN **CS-125** Lab on Data Science 2 4 4 20 30 OE-2 **OE** Spreadsheet Tools (Hands on) **CS-126** 2 2 2 20 30 SEC-2 Linux Fundamentals 2 2 SEC **CS-127** 2 20 30 --2 SEC-3 SEC **CS-128** Lab on Linux Fundamental 4 4 --20 30 **VEC** 2 2 VEC-2 **CI-129** Constitution of India 2 20 30 CC-2 **CC-130** CC 2 2 2 Select any ONE of the following: 50 (A/B)A) NSS B) NCC 2 AEC-2 **AEC** EG-102 English -2 2 2 20 30 Cumulative Credits for First Year - 44

^{*} Students need to complete one month on job training **(OJT)** or internship in any industry related to major subject.

	NEP2020, for Affiliated Colleges w.e.f. – June 2024										
	B. Sc.	(Honor	s/Research) - Second Year	r, SEMI	EST	ER -	· III, Le	vel	- 5.	0	
Course	Course Type	Course Code	Course Title	Credits	Tea	ching We	g Hours/	Mai	rks (T	Γotal	100)
	Турс	couc			Т	P	Total		rnal A)		ernal UA)
								T	P	T	P
DSC-7	DSC	CS-211	Data Structure-I	2	2		2	20		30	•
DSC-8	DSC	CS-212	Object Oriented Programming using C++-I	2	2		2	20		30	-
DSC-9	DSC	CS-213	Lab on Data Structure-I	2		4	4		20	-	30
DSC-10	DSC	CS-214	Lab on OOP using C++-I	2		4	4		20	1	30
MIN-5	MIN	CS-215	Web Design	2	2		2	20		30	
MIN-6	MIN	CS-216	Lab on Web Design	2		4	4		20	-	30
0E-3	OE	CS-217	Database utilities in Access	2	2		2	20		30	
VSC-1	VSC	CS-218	Web Design	2	2		2	20		30	
VSC-2	VSC	CS-219	Lab on Web Design	2		4	4		20	1	30
CC-3	CC	CC-220 (A/B)	Select any ONE of the following: A) Human Rights and Environment Law B) Cyber Security	2	2		2	50	-	-	
		MR-201	Marathi -1	2	2		2	20		30	
AEC-3	AEC	HN-201	Hindi -1	2	2		2	20		30	
	B. Sc.	(Honor	s/Research) - Second Year	r, SEMI	EST	ER -	· IV, Le	vel	- 5.	0	
DSC-11	DSC	CS-221	Data Structure-II	2	2		2	20		30	
DSC-12	DSC	CS-222	Object Oriented Programming using C++-II	2	2		2	20		30	
DSC-13	DSC	CS-223	Lab on Data Structure-II	2		4	4		20	1	30
DSC-14	DSC	CS-224	Lab on OOP using C++-II	2		4	4		20	1	30
MIN-7	MIN	CS-225	Introduction of Database Management system	2	2		2	20		30	
MIN-8	MIN	CS-226	Lab on Introduction of Database Management system	2		4	4		20		30
OE-4	OE	CS-227	Data Analytic Tools	2	2		2	20		30	
CEP	CEP	CS-228	Field Project								
CC-4	CC	CC-229 (A/B)	Select any ONE of the following: A) Communication Skills andPersonality Development B) Cultural	2	2		2	50			
AEC 4	AEC	MR-202	Marathi -2	2	2		2	20		30	1
AEC-4	AEC	HN-202	Hindi -2	2	2		2	20		30	•

Cumulative Credits For First Year - 44

B. Sc. (Honors/Research) - Third Year, SEMESTER - V, Level - 5.5 Course **Course Title** Credits Teaching Hours/Marks (Total 100) Course Course Code Week **Type** Internal External Total Т (CA) (UA) T P T P **DSC-15 CS-311** Software Engineering 20 **DSC** 2 2 2 30 **DSC-16 DSC CS-312** Database Management System 2 2 2 20 **30 DSC-17 DSC CS-313** Java Programming - I 2 2 2 20 **30** LAB on DBMS 2 **DSC-18 DSC CS-314** 4 4 20 **30 DSC-19 DSC CS-315** LAB on Java Programming - I 2 4 4 **20 30 CS-316 (A)** Python Programming - I 2 2 2 20 30 **CS-316 (B)** Programming in PHP 2 2 2 20 **30** DSE-1 **DSE** 2 2 2 **CS-316 (C)** Introduction to Big Data 20 30 Analytics DSE-2 CS-317 (A) Lab on Python Programming - I 2 **DSE** 4 4 20 **30 Select CS-317 (B)** Lab on Programming in PHP LAB for **CS-317 (C)** Lab on Big Data Analytics **DSE-I** MIN-9 **CS-318** Computer Aided Graphics MIN 2 2 20 30 2 VSC-3 Computer Network VSC **CS-319** 2 2 2 20 30 FP FP CS-320 Field Project 4 8 8 40 60 B. Sc. (Honors/Research) - Third Year, SEMESTER - VI, Level - 5.5 System Programming and **DSC-20** DSC CS-321 2 2 2 20 30 Operating System **DSC-21** DSC CS-322 Theoretical Computer Science 2 2 2 30 20 DSC-22 DSC CS-323 Java Programming - II 2 2 2 20 **30** LAB on System Programming **DSC-23** DSC CS-324 2 4 4 20 30 and OS LAB on Java Programming - II 2 **DSC-24** DSC CS-325 4 4 20 30 CS-326 (A) Python Programming - II 2 2 2 20 **30** CS-326 (B) Data Science 2 2 2 20 --30 ----DSE-3 **DSE** 2 2 CS-326 (C) Machine Learning 2 20 30 2 DSE-4 **DSE CS-327 (A)** Lab on Python Programming - II 4 4 20 30 **Select** CS-327 (B) Lab on Data Science LAB for CS-327 (C) Lab on Machine Learning DSE-3 MIN-10 CS-328 Software Tools for Industry 2 MIN 2 2 20 30 Approach VSC-4 VSC Software Project Management 2 2 CS-329 2 30 20 ------*0JT/ OJT/Int **CS-330** On Job Training/Internship 4 8 8 40 60

^{*} Students need to complete one month on job training **(OJT)** or internship in any industry related to major subject.

B. Sc. (Honors/Research) – 4th Year (Honors), SEMESTER – VII, Level – 6.0

Course	Course Type	Course Code	Course Title	Credits	Teaching Hours, Week		Mar	ks (T	100)		
					Т	P	Total		rnal A)		ernal JA)
								T	P	T	P
DSC-25	DSC	CS-411	Artificial Intelligence	4	4	1	4	40	-	60	-
DSC-26	DSC		Design and Analysis of Algorithms	2	2		2	20		30	
DSC-27	DSC	CS-413	Data Mining	4	4		4	40		60	
DSC-28	DSC	CS-414	LAB on DAA	2		4	4		20		30
DSC-29	DSC	CS-415	LAB on AI and Data Mining	2		4	4		20		30
		CS-416 (A)	Cloud Computing	4	4	1	4	40	1	60	1
DSE-5	DSE	CS-416 (B)	Web Analytics	4	4	-	4	40		60	
		CS-416 (C)	Digital Image Processing	4	4	1	4	40		60	
RM	RM	CS-417	Research Methodology	4	4	1	4	40		60	
B.	Sc. (H	onors/Re	esearch) – 4 th Year (Honors	s), <mark>SEM</mark>	EST	ER	- VIII,	Lev	el -	6.0	
DSC-30	DSC	CS-421	Compiler Construction	4	4		4	40		60	
DSC-31	DSC		Current Computing Trends (CCT) in Java	2	2	1	2	20	-	30	-
DSC-32	DSC	CS-423	Advance OS	4	4	-	4	40		60	
DSC-33	DSC	CS-424	LAB on CCT in Java	2		4	4		20		30
DSC-34	DSC	CS-425	LAB on Advance OS	2	-	4	4		20		30
		CS-426(A)	Network Programming	4	4		4	40		60	1
DSE-6	DSE	CS-426(B)	Optimization Techniques	4	4	1	4	40	-	60	
			Natural Language Processing	4	4	1	4	40	-	60	-
*OJT/ Int	OJT/Int	CS-427	On Job Training/Internship	4		8	8		40	1	60

^{*} Students need to complete one month on job training (OJT) or internship in any industry related to major subject.

B. Sc. (Honors/Research) - 4th Year (Research), SEMESTER - VII, Level - 6.0

Course	Course Type	Course Code	Course Title	Credits	Teaching Hours, Week			Mar	ks (1	otal	100)
					T	P	Total	Inte (C			ernal JA)
								T	P	T	P
DSC-25	DSC	CS-411	Introduction to Database Tool (DbVisualizer)	4	4		4	40		60	-
DSC-26	DSC	CS-412	Angular JS	2	2		2	20		30	-
DSC-28	DSC	CS-414	LAB on Introduction to Database Tool (DbVisualizer)	2	-	4	4	1	20	-	30
DSC-29	DSC	CS-415	Lab on Angular JS	2		4	4		20		30
		CS-416 (A)	Natural Language Processing	4	4		4	40		60	-
DSE-5	DSE	CS-416 (B)	Digital Image Processing	4	4		4	40		60	
		,	Ethical Hacking and Penetration Testing	4	4		4	40	1	60	
RM	RM	CS-417	Research Methodology	4	4		4	40		60	
RP	RP	CS-418	Research Project	4		8	8		40		60
B.	Sc. (H	onors/Re	esearch) - 4 th Year (Resear	ch), <mark>SE</mark>	ME	STE	R – VII	I, Le	evel	- 6	.0
DSC-30	DSC	CS-421	Data Visualization	4	4		4	40		60	
DSC-31	DSC	CS-422	Advanced Trends in Cloud Computing	2	2	-	2	20	1	30	-
DSC-33	DSC	CS-424	LAB on Data Visualization	2		4	4		20		30
DSC-34	DSC	CS-425	LAB on Advanced Trends in Cloud Computing	2		4	4	1	20		30
		CS-426(A)	Internet of Things (IoT)	4	4		4	40	-	60	1
DSE-6	DSE	CS-426(B)	Linux Server Administration	4	4	-	4	40		60	
	_	CS-426(C)	Network Programming	4	4		4	40		60	•
RP	RP	CS-428	On Job Training/Internship	8		16	16	1	80	1	120

^{*} Students need to complete one month on job training (OJT) or internship in any industry related to major subject.

Course Title: Essentials of Computer

Course Code: CS-111	Course Category: Core Course (DSC)
Course Title: Essentials of Computer	Type: Theory
Total Contact Hours: 30 (2/week)	Course Credits: 02
College Assessment (CA) Marks: 20	University Assessment (UA): 30 Marks
Marks	

Course Objectives:

- To learn about basics of computer
- To learn designing an algorithm.
- To study about networks and its type
- To learn about OS and its different types.

Course Outcomes:

CO No.	со	Cognitive level
BCS111C.1	To do basic operations regarding OS	2
BCS111C.2	To identify network type and analyze & comply basic issues in networking.	3
BCS111C.3	To design an algorithm and draw the flowchart.	6

Course Content:

Unit-1. Introduction to Computer Components

(08 L, 12 M)

- 1.1 Definition of computer
- 1.2 Block Diagram of Computer, Types of computer, Neumann machine
- 1.3 Input Devices and Output Devices
- 1.4 Memory: RAM, ROM, EPROM, PROM, SSD
- 1.5 Definition: Data, Information, Algorithm, Flowchart, Program, Hardware, and
- 1.6 Software: System Software, Application, Software, Firmware, Interpreter, compiler
- 1.7 Programming Languages: High level, Middle Level, Low Level

Unit-2 Basics of Algorithms and Flowcharts

(06 L, 09 M)

- 2.1 What is Algorithm?, Steps for creation of Algorithm.
- 2.2 Properties of Algorithm and Examples
- 2.3 What is Flowchart?, Symbols for drawing Flowcharts, Examples
- 2.4 Advantages of algorithm and flowcharts.

Unit -3. Concepts of network

(08 L, 12 M)

- 3.1 What is Computer Network?
- 3.2 Types of Networks (with Features and Application): LAN, WAN, MAN Wired Network, Wireless Network
- 3.3 Introduction and application of Internet
- 3.4 Network Topology
- 3.5 Study of Web Browsers and Search Engines

Unit -4. Operating System

(08 L, 12 M)

- 4.1 What is booting, POST, Bootstrap, Boot Drive.
- 4.2 Definition of operating system, functions of operating system
- 4.3 Introduction of operating systems: DOS, Windows, Linux, Android
- 4.4 Applications of Operating System,
- 4.5 Comparison Of various Operating Systems

References:

- 1. V. Rajaraman, "Fundamentals of Computers", PHI publication, ISBN: 8120340116, 9788120340114
- 2. Fundamentals of Data Structures in C by Ellis Horowitz, Sartaj Sahni, Susan Anderson Freed.
- 3. Fundamentals of Computer Algorithms by Ellis Horowitz, Sartaj Sahni, Sanguthever
- 4. Abraham Silberschatz, Peter B. Galvin, Greg Gagne," Operating System concepts", ISBN:1119017475, 9781119017479
- 5. Andrew S. Tanenbaum, David J. Wetheral, "Computer Network", ISBN 0133072622, 9780133072624

Course Title: C Programming

Course Code: CS-112	Course Category: Core Course (DSC)
Course Title: C Programming	Type: Theory
Total Contact Hours: 30 (2/week)	Course Credits: 02
College Assessment (CA) Marks: 20	University Assessment (UA): 30 Marks
Marks	

Course Objectives:

- Understand basic Structure of the C-Programming, declaration and usage of variables
- Understand the concepts of various operators and conditional statements.
- Understand array to store multiple pieces of homogeneous data.
- Understand the concepts of functions and pointers.
- Be able to work with operators and conditional statements.

CO No.	со	Cognitive level
BCS112C.1	Apply the C-language syntax rules to write C program	3
BCS112C.2	Analyze given problem to convert in programing logic.	4
BCS112C.3	Develop C programs to solve mathematical and decision-making problems.	6

Course Content:

Unit 1: Fundamentals and Element of 'C' Program

(4 L, 8M)

Introduction & structure of C Program, Variables and Identifiers, Declaration of variables, keywords, Data types and Qualifiers, Constants and types of constants, Comments, Input Output Statements (Standard and formatted), pre-processor directives.

Unit 2:Operators and Conditional Statements

(8L, 0M)

Types of Operators –Arithmetic, Relational, Logical, Assignment, Compound assignment operator (short hand assignment), Bitwise, Increment-Decrement, Conditional Operator, Special Operator – Comma, sizeof operator, Operator Precedence and Associativity, Type Conversion – implicit and explicit, If Statement, if-else Statement, nested if-else Statement, Switch Statement, Break, continue and goto statements, Looping Concepts - While, do-while, for loop Nested loops Concept.

Unit 3:Arrays and Strings

Array: declaration and Initialization, Types of array (One Dimensional and Multidimensional), String Function: strcpy(), strlen(), strcmp(), strcat(), strrev().

Unit 4:Functions and Pointers

(10L, 15M)

Declaration and Prototypes, Function calling (Call by value, call by reference), Function with return and Function with argument, Recursion.

Pointers, accessing value through a pointer, Operations on Pointers: Pointers and Arrays, Array of Pointer, Dynamic memory allocation and releasing dynamically allocated memory, **structure and union**: Introduction, Declaration and access.

- 1. Denis Ritchie. "C" Programming Prentice Hall Software Series- ISBN. 10 9 8 7
- 2. Yashwant P. Kanetkar ANSI C, BPB publication. ISBN: 9788183333245
- 3. Byron Gottfried Programming with C –Tata McGRAW-Hill ISBN-10: 0070145903
- 4. Yashwant P. Kanetkar -Understanding pointers in "C" -BPB publication. ISBN-13: 978-8176563581
- 5. E.Balguruswami -Programming in ANSI- C- Tata McGRAW-Hill- ISBN-10: 933921966X
- 6. Mike McGrath C programming in easy step Wiley publication ISBN-10: 1840785446

Course Title: Lab on C Programming

Course Code: CS-113	Course Category: Core Course (DSC)
Course Title: Practical based on C	Type: Practical
Programming	
Total Contact Hours: 60 (4/week)	Course Credits: 02
College Assessment (CA) Marks: 20	University Assessment (UA): 30 Marks
Marks	

Course Objectives:

- To study various data types, arrays and functions in C
- To understand input-output and, control and iterative statements in C

Course Outcomes:

CO No.	со	Cognitive level
BCS113C.1	Apply appropriate data types and control structures for problem solving using C	4
BCS113C.2	Implement the real world problems by devising algorithm and implement using C	6
BCS113C.3	Illustrate and explain the programming principles of C language by drawing flowchart for given problem.	5

List of Experiment:

- 1. Demonstration of use of data types, simple operators (expressions)
- 2. Demonstration of decision making statements (if and if-else, nested control statements)
- 3. Demonstration of decision making statements (switch case)
- 4. Demonstration of use of while loops, for loops, do-while loops, nested loops
- 5. Demonstration of exit, goto, continue, break.
- 6. Demonstrations of Structure and Union.
- 7. Demonstration of writing C programs in modular way (use of user defined functions)
- 8. Demonstration of call by value, call by reference and recursive functions
- 9. Demonstration of use of arrays (1-D array, 2-D arrays) and functions
- 10. Demonstration of Standard Library Function.

Course Title: C Programming:

Course Code: CS-114	Course Category: Minor Course (MIN)
Course Title: C Programming	Type: Theory
Total Contact Hours: 30 (2/week)	Course Credits: 02
College Assessment (CA) Marks: 20	University Assessment (UA): 30 Marks
Marks	

Course Objectives:

- Understand basic Structure of the C-Programming, declaration and usage of variables
- Understand the concepts of various operators and conditional statements.
- Understand array to store multiple pieces of homogeneous data.
- Understand the concepts of functions and pointers.
- Be able to work with operators and conditional statements.

CO No.	со	Cognitive level
BCS114C.1	Apply the C-language syntax rules to write C program	3
BCS114C.2	Analyze given problem to convert in programing logic.	4
BCS114C.3 Develop C programs to solve mathematical and decision making problems. 6		6

Course Content:

Unit 1: Fundamentals and Element of 'C' Program

(4L, 8M)

Introduction & structure of C Program, Variables and Identifiers, Declaration of variables, keywords, Data types and Qualifiers, Constants and types of constants, Comments, Input Output Statements (Standard and formatted), pre-processor directives.

Unit 2: Operators and Conditional Statements

(8L, 10M)

Types of Operators –Arithmetic, Relational, Logical, Assignment, Compound assignment operator (short hand assignment), Bitwise, Increment-Decrement, Conditional Operator, Special Operator – Comma, sizeof operator, Operator Precedence and Associativity, Type Conversion – implicit and explicit, If Statement, if-else Statement, nested if-else Statement, Switch Statement, Break, continue and goto statements, Looping Concepts - While, do-while, for loop Nested loops Concept.

Unit 3: Arrays and Strings

Array: declaration and Initialization, Types of array (One Dimensional and Multidimensional), String Function: strcpy(), strlen(), strcmp(), strcat(), strrev().

Unit 4: Functions and Pointers

(10L, 15 M)

Declaration and Prototypes, Function calling (Call by value, call by reference), Function with return and Function with argument, Recursion.

Pointers, accessing value through a pointer, Operations on Pointers: Pointers and Arrays, Array of Pointer, Dynamic memory allocation and releasing dynamically allocated memory, **structure and union:** Introduction, Declaration and access.

- 1. Denis Ritchie. "C" Programming Prentice Hall Software Series- ISBN. 10 9 8 7
- 2. Yashwant P. Kanetkar ANSI C, BPB publication. ISBN: 9788183333245
- 3. Byron Gottfried Programming with C Tata McGRAW-Hill ISBN-10: 0070145903
- 4. Yashwant P. Kanetkar -Understanding pointers in "C" -BPB publication. ISBN-13: 978-8176563581
- 5. E.Balguruswami -Programming in ANSI- C- Tata McGRAW-Hill- ISBN-10: 933921966X
- 6. Mike McGrath C programming in easy step Wiley publication ISBN-10: 1840785446

Course Title: Lab on C Programming

Course Code: CS-115	Course Category:Minor Course (MIN)
Course Title: Practical based on C	Type: Practical
Programming	
Total Contact Hours: 60 (4/week)	Course Credits: 02
College Assessment (CA) Marks: 20	University Assessment (UA): 30 Marks
Marks	

Course Objectives:

- To study various data types, arrays and functions in C
- To understand input-output and, control and iterative statements in C

Course Outcomes:

CO No.	со	Cognitive level
BCS115C.1	Apply appropriate data types and control structures for	4
	problem solving using C	
BCS115C.2	Implement the real world problems by devising algorithm	6
	and implement using C	
BCS115C.3	Illustrate and explain the programming principles of C	5
	language by drawing flowchart for given problem.	

On completion of the course, students will be able to-

- Formulate an algorithm and draw flowchart for the given problem
- Implement the given algorithm in C
- Write programs using appropriate data types and control structures in C

List of Experiment:

- 1. Demonstration of use of data types, simple operators (expressions)
- 2. Demonstration of decision making statements (if and if-else, nested control statements)
- 3. Demonstration of decision making statements (switch case)
- 4. Demonstration of use of while loops, for loops, do-while loops, nested loops
- 5. Demonstration of exit, goto, continue, break.
- 6. Demonstrations of Structure and Union.
- 7. Demonstration of writing C programs in modular way (use of user defined functions)
- 8. Demonstration of call by value, call by reference and recursive functions
- 9. Demonstration of use of arrays (1-D array, 2-D arrays) and functions
- 10. Demonstration of Standard Library Function.

Course Title: Word Processing Tools (Hands on)

Course Code: CS-116	Course Category: Open Elective Course (OE)
Course Title: Word Processing Tools (Hands	Type: Theory
on)	
Total Contact Hours: 30 (2/week)	Course Credits: 02
College Assessment (CA) Marks: 20 Marks	University Assessment (UA): 30 Marks

Course Objectives:

- This course introduces word processing concepts and applications.
- Topics include preparation or a variety of documents and mastery of specialized software functions.
- Upon completion, students should be able to work effectively in a computerized word processing environment.

Course Outcomes: This course will enable the students to

CO No.	со	Cognitive level	
BCS116C.1	Identify and navigate different components of the MS Word	3	
	interface, including ribbons, menus, and toolbars.		
BCS116C.2	Use advanced features of macros, styles, graphics,	3	
	document protection, table of contents, and indexes		
BCS116C.3	Create and format professional-looking text documents 6		
	using MS Word, including tasks such as setting margins,		
	aligning text, applying font styles and sizes, and inserting		
	images and tables.		

Course Content:

Unit 1: Introduction to Word Processing

(06 L, 12 M)

- 1.1 Development of the Word Processor
- 1.2 Design considerations for word processed documents
- 1.3 Open Office suite's word processing application/Writer
- 1.4 Opening and Closing Writer, Creating, opening and closing documents
- 1.5 Working with multiple documents
- 1.6 Saving documents, Save an existing file under another name, Save different Versions.

Unit 2: Locating the Components of the Writer Window

(04 L, 06 M)

- 2.1 Writer toolbars and ruler
- 2.2 Adjusting the application settings
- 2.3 Adding content to Writer Documents
- 2.4 Working with text
- 2.5 Editing Content

Unit 3: Formatting Documents and Tables

- (08 L, 12 M)
- 3.1 Text Formatting, Paragraph Formatting, Text alignment
- 3.2 Tabs and its types, Placing text at the tab position
- 3.3 Paragraph spacing
- 3.4 Working with lists, Paragraph borders and shading
- 3.5 Creating and Applying Styles
- 3.6 Adding data to a table, Deleting a table
- 3.7 Add and delete columns and rows, Modifying columns and rows
- 3.8 Images, Inserting images, Modifying images, Resize an image and charts

Unit 4: Mail Merge and Google Docs

(12 L, 15 M)

- 4.1 Preparing the documents, creating the main document
- 4.2 Creating the data source, Document formatting
- 4.3 Create new documents from scratch, as well as from templates.
- 4.4 Open existing documents from Google Docs, as well as other word processing programs.
- 4.5 Navigate both the desktop and mobile versions of Google Docs.
- 4.6 Format text, paragraphs, and pages.
- 4.7 Insert, format, and edit images and graphics.
- 4.8 Share and collaborate on documents with other users.
- 4.9 Publish documents to the web.
- 4.10 Print documents. Install add- ons to give Google Docs even more function and features.

- 1. Microsoft Word 2013 with CD by Nita Rutkosky and Audrey Rutkosky Roggenkamp, Paradigm Publishing, 2011, ISBN 978-0-76385-199-6 (text and CD).
- 2. Mastering MS Office, Bittu Kumar, V&S Publishers, 2017

Course Title: Software and Hardware Installation

Course Code: CS-117	Course Category: Skill Enhancement Course
Course Title: Software and Hardware	Type: Theory
Installation	
Total Contact Hours: 30 (2/week)	Course Credits: 02
College Assessment (CA) Marks: 20	University Assessment (UA): 30 Marks
Marks	

Course Objectives:

- To make aware about Operating System Basics & Installation.
- To demonstrate various Software Installation and Device Installation.
- To introduce student with diagnostic Tools & PC Maintenance.
- To give Basic Network Introduction & Installation.

Course Outcomes:

CO No.	со	Cognitive level
BCS117C.1	Demonstrate knowledge of Operating System Basics &	2
	Installation.	
BCS117C.2	Understanding about various Software Installation and	2
	Device Installation process	
BCS117C.3	Apply Knowledge about Basic Network & its Installation	3
BCS117C.4	Analyze hardware issues by using diagnostic Tools & able 4	
	to do PC Maintenance	

Course Content:

Unit 1: Operating System Basics & Installation

(08 L, 12 M)

- 1.1 Introduction to OS
- 1.2 Types of Operating systems
- 1.3 System files FAT and NTFS
- 1.4 Dos 6.22, Windows 7 and RedHat Linux and Multi Boot Operating System.

Unit 2: Various types of Software Installation and Device Installation

(08 L, 12 M)

- 2.1 MS-Office 2010, Photoshop 7 and CS5
- 2.2 Tally 7.0 and ERP, Acrobat Reader X, Java, Visual Studio, C & C++,
- 2.3 Multimedia software's, and Internet Browsers like- IE9, Google Chrome, Mozilla Firefox
- 2.4 Graphics Card, Sound Card
- 2.5 LAN Card, Wireless LAN Card, SCSI Card
- 2.6 External Drive, Flash Cards, Web Camera, CCTV Camera

- 2.7 Mobile Devices, Firewire Cards
- 2.8 Modem, Plotter, Wireless LAN, Access Point.

Unit 3:Diagnostic Tools & PC Maintenance

(06L, 10 M)

- 3.1 Introduction, Virus and its types
- 3.2 Effect of Virus for Computer System
- 3.3 Scanning and Antivirus remover tools
- 3.4 Antivirus Utilities for Diagnostic, Safety and Preventive Maintenance Tools
- 3.5 Data Recovery, Troubleshooting
- 3.6 PC Hardware:- O/S Troubleshooting issues in computer System.

(Related Diagnostic Tools should be covered)

Unit-4: Basic Network Introduction & Installation

(06L, 12 M)

- 4.1 Introduction about Network
- 4.2 Installing Network Operating System Server and Windows 2008 Server
- 4.3 Cable Crimping
- 4.4 Network Sharing and user Permission
- 4.5 Internet Connection, E-Mail, Cloud Networking
- 4.6 Google Drive, SkyDrive, Dropbox, etc.

- 1. Windows XP Professional edition complete BPB Publication
- 2. Office XP complete BPB publication
- 3. Microsoft Windows Server 2008 Administration by STEVE SEGUIS,
- 4. McGraw Hill Publication, ISBN 10: 0071493263 ISBN 13: 9780071493260.
- 5. Upgrading and Repairing PC by Scott Muller, ISBN-13: 978-0789756107,ISBN-10: 9780789756107
- 6. https://www.makeuseof.com/tag/13-windows-diagnostics-tools-check-pcs-health/

Course Title: Introduction to Data Science

Course Code: CS-121	Course Category: Core Course (DSC)
Course Title: Introduction to Data Science	Type: Theory
Total Contact Hours: 30 (2/week)	Course Credits: 02
College Assessment (CA) Marks: 20 Marks	University Assessment (UA): 30 Marks

Course Objectives:

By the end of the course, students should be able to:

- Define data science and explain its significance in various fields.
- Utilize data manipulation techniques to preprocess and clean data.
- Apply exploratory data analysis (EDA) methods to gain insights into datasets.
- Understand fundamental statistical concepts used in data science.
- Implement basic data visualization techniques to effectively communicate findings.
- Apply machine learning algorithms to solve prediction and classification tasks.
- Explain the importance of data ethics and privacy in data science projects.
- Work collaboratively on data science projects and communicate results effectively.

Course Outcomes:

CO No.	со	Cognitive level	
BCS121C.1	Identify and describe the methods and techniques	3	
	commonly used in data science.		
BCS121C.2	Model the problem with the help of methods and	3	
	techniques for obtaining, organizing, exploring, and		
	analyzing data.		
BCS121C.3	Perform data analysis and use inferential statistics,	6	
	machine learning, and statistical computing to solve		
	problem.		

Course Content:

Unit 1:The Data Science Road Map

(08 L, 12 M)

- 1.1 Introduction
- 1.2 Frame the Problem
- 1.3 Understand the Data: Basic Questions, Data Wrangling, And Exploratory Analysis.
- 1.4 Extract Features
- 1.5 Model
- 1.6 Present Results
- 1.7 Deploy Code
- 1.8 Iterating.

Unit 2:Programming Languages

(06 L, 12 M)

2.1 Why Use a Programming Language?

- 2.2A Survey of Programming Languages for Data Science:
 - Python
 - R
 - MATLAB® and Octave
 - SAS®
 - Scala®

Unit 3:Data Munging

(08 L, 12 M)

- 3.1 Problems with Data Content
- 3.2 Formatting Issues
- 3.3 Example Formatting Script
- 3.4 Regular Expressions

Unit 4:Visualizations and Simple Metrics

(08 L, 14 M)

- 4.1 Python's Visualization Tools
- 4.2 Pie Charts
- 4.3 Bar Charts
- 4.4 Histograms
- 4.5 Means, Standard Deviations, Medians, and Quantiles
- 4.6 Boxplots
- 4.7 Scatterplots

- 1. F. Cady, "The Data Science Handbook". John Wiley & Sons, Incorporated, 2017. [Online]. Available: https://books.google.co.in/books?id=VjkbnQAACAAI.
- 2. "Data Science for Beginners" by John D. Kelleher
- 3. "Smarter Decisions: The Intersection of IoT and Data Science", Jojo Moolayil, PACKT, 2016.
- 4. "Doing Data Science", Cathy O'Neil and Rachel Schutt, O'Reilly, 2015.

Course Title: Vedic Mathematics

Course Code: CS-122	Course Category: Core Course (DSC)
Course Title: Vedic Mathematics	Type: Theory
Total Contact Hours: 30 (2/week)	Course Credits: 02
College Assessment (CA) Marks: 20	University Assessment (UA): 30 Marks
Marks	

Course Objectives:

- Gain an understanding of the historical and cultural context in which Vedic mathematics developed.
- Learn and apply fundamental Vedic mathematical sutras for addition, subtraction, multiplication, and division.
- Develop the ability to perform mental calculations quickly and accurately using Vedic methods.
- Use Vedic mathematics to solve geometry problems.

Course Outcomes:

CO No.	со	Cognitive level	
BCS122C.1	Apply Vedic sutras effectively to perform mental	3	
	calculations, leading to improved speed and accuracy in		
	arithmetic operations.		
BCS122C.2	Utilize Vedic methods to simplify geometry and	3	
	trigonometry problems, enhancing problem-solving skills		
	in these areas.		
BCS122C.3	Demonstrate ethical mathematical practices, including	2	
	proper attribution of sources and responsible problem-		
	solving		

Course Content:

Unit 1: Introduction to Vedic Mathematics

(08 L, 12 M)

- 1.1 Historical background and significance of Vedic mathematics.
- 1.2 Overview of Vedic mathematical techniques and sutras.
- 1.3 Benefits of learning Vedic mathematics.
- 1.4 Introduction to mental calculation strategies.

Unit 2: Basic Operations

(08 L, 12 M)

- 2.1 Addition and subtraction using Vedic sutras.
- 2.2 Sutra: "NikhilamNavatashcaramamDashatah" (All from 9 and the last from 10).
- 2.3 Multiplication techniques.

- 2.4 Sutra: "Urdhva-Tiryagbhyam" (Vertically and crosswise).
- 2.5 Division techniques.
- 2.6 Sutra: "ParavartyaYojayet" (Transpose and apply).
- 2.7 Practical exercises and problems involving these operations.

Unit 3: Advanced Multiplication and Division

(08 L, 12 M)

- 3.1 Advanced multiplication of numbers with specific patterns.
- 3.2 Sutra: "EkadhikenaPurvena" (By one more than the previous one).
- 3.3 Squaring numbers.
- 3.4 Sutra: "Anurupyena" (Proportionately).
- 3.5 Finding square roots.
- 3.6 Sutra: "ShunyamSaamyasamuccaye" (The sum of the same in balance).
- 3.7 Cube roots and cube calculations.
- 3.8 Sutra: "VargaYojayet" (By the completion or non-completion in the square).

Unit 4: Algebraic Techniques

(06 L, 09 M)

- 4.1 Solving algebraic equations using Vedic methods.
- 4.2 Simplifying and factorizing algebraic expressions.
- 4.3 Applying Vedic mathematics to polynomial and quadratic equations.
- 4.4 Practical exercises and problem-solving in algebra.
- 4.5 Using Vedic techniques to solve geometry problems.
- 4.6 Trigonometric calculations made easier with Vedic methods.

- 1. Bharati Krisna Tirthaji, "Vedic Mathematics: Sixteen Simple Mathematical Formulae From The Vedas",
- 2. Dhaval Bathia "Vedic Mathematics Made Easy"
- 3. Kenneth Williams "Vedic Mathematics for All Ages: A Beginner's Guide"

Course Title: Lab on Data Science

Course Code: CS-123	Course Category: Core Course (DSC)
Course Title: Lab on Introduction to Data	Type: Practical
Science	
Total Contact Hours: 60 (4/week)	Course Credits: 02
College Assessment (CA) Marks: 20	University Assessment (UA): 30 Marks
Marks	

Course Objectives:

- To learn features in data science
- To study data manipulation techniques
- To understand fundamental statistical concepts used in data science.

Course Outcomes: On completion of the course, student will be able to-

CO No.	со	Cognitive level
BCS123C.1	Understand programming abilities to tackle data.	2
BCS123C.2	Demonstrate proficiency with statistical analysis of data.	4
BCS123C.3	Apply skills to manage data using data science methods.	3
BCS123C.4	Utilize data science concepts and methods to resolve problems in real-world contexts.	6

List of Experiment:

Note: All experiments should be performed using C programming language and Excel.

- 1. Create and display data and matrix manipulation.
- 2. Create and manipulate list and an array.
- 3. Create a data frame and matrix-like operations on a data frame.
- 4. Merging two Data Frames and applying functions to Data frames
- 5. Visualization Effects and Linear Regression(Here equation is y=mx+c, find m and c and display scatter plot coordinates)
- 6. Plotting with layers and Histogram & Density Charts.
- 7. Implement a program to calculate Means and Standard Deviations.
- 8. Implement a program to calculate Medians, and Quantiles.

Course Title: Introduction to Data Science

Course Code: CS-124	Course Category: Minor Course (MIN)
Course Title: Introduction to Data Science	Type: Theory
Total Contact Hours: 30 (2/week)	Course Credits: 02
College Assessment (CA) Marks: 20 Marks	University Assessment (UA): 30 Marks

Course Objectives:

By the end of the course, students should be able to:

- Define data science and explain its significance in various fields.
- Utilize data manipulation techniques to preprocess and clean data.
- Apply exploratory data analysis (EDA) methods to gain insights into datasets.
- Understand fundamental statistical concepts used in data science.
- Implement basic data visualization techniques to effectively communicate findings.
- Apply machine learning algorithms to solve prediction and classification tasks.
- Explain the importance of data ethics and privacy in data science projects.
- Work collaboratively on data science projects and communicate results effectively.

Course Outcomes:

CO No.	со	Cognitive level
BCS124C.1	Identify and describe the methods and techniques	3
	commonly used in data science.	
BCS124C.2	Model the problem with the help of methods and	3
	techniques for obtaining, organizing, exploring, and	
	analyzing data.	
BCS124C.3	Perform data analysis and use inferential statistics,	6
	machine learning, and statistical computing to solve	
	problem.	

Course Content:

Unit 1:The Data Science Road Map

(08 L, 12 M)

- 1.1 Introduction
- 1.2 Frame the Problem
- 1.3 Understand the Data: Basic Questions, Data Wrangling, And Exploratory Analysis.
- 1.4 Extract Features
- 1.5 Model
- 1.6 Present Results
- 1.7 Deploy Code
- 1.8 Iterating.

Unit 2:Programming Languages

(06 L, 12 M)

- 2.1 Why Use a Programming Language?
- 2.2A Survey of Programming Languages for Data Science:
 - Python
 - R
 - MATLAB® and Octave
 - SAS®
 - Scala®

Unit 3:Data Munging

(08 L, 12 M)

- 3.1 Problems with Data Content
- 3.2 Formatting Issues
- 3.3 Example Formatting Script
- 3.4 Regular Expressions

Unit 4:Visualizations and Simple Metrics

(08 L, 14 M)

- 4.1 Python's Visualization Tools
- 4.2 Pie Charts
- 4.3 Bar Charts
- 4.4 Histograms
- 4.5 Means, Standard Deviations, Medians, and Quantiles
- 4.6 Boxplots
- 4.7 Scatterplots

- 5. F. Cady, "The Data Science Handbook". John Wiley & Sons, Incorporated, 2017. [Online]. Available: https://books.google.co.in/books?id=VjkbnQAACAAI.
- 6. "Data Science for Beginners" by John D. Kelleher
- 7. "Smarter Decisions: The Intersection of IoT and Data Science", JojoMoolayil, PACKT, 2016.
- 8. "Doing Data Science", Cathy O'Neil and Rachel Schutt, O'Reilly, 2015.

Course Title: Lab on Data Science

Course Code: CS-125	Course Category: Minor Course (MIN)
Course Title: Lab on Introduction to Data	Type: Practical
Science	
Total Contact Hours: 60 (4/week)	Course Credits: 02
College Assessment (CA) Marks: 20	University Assessment (UA): 30 Marks
Marks	

Course Objectives:

- To learn features in data science
- To study data manipulation techniques
- To understand fundamental statistical concepts used in data science.

Course Outcomes: On completion of the course, student will be able to-

CO No.	со	Cognitive level
BCS125C.1	Understand programming abilities to tackle data.	2
BCS125C.2	Demonstrate proficiency with statistical analysis of data.	4
BCS125C.3	Apply skills to manage data using data science methods.	3
BCS125C.4	Utilize data science concepts and methods to resolve problems in real-world contexts.	6

List of Experiment:

Note: All experiments should be performed using C programming language/Excel.

- 1. Create and display data and matrix manipulation.
- 2. Create and manipulate list and an array.
- 3. Create a data frame and matrix-like operations on a data frame.
- 4. Merging two Data Frames and applying functions to Data frames
- 5. Visualization Effects and Linear Regression(Here equation is y=mx+c, find m and c and display scatter plot coordinates)
- 6. Plotting with layers and Histogram & Density Charts.
- 7. Implement a program to calculate Means and Standard Deviations.
- 8. Implement a program to calculate Medians, and Quantiles.

Course Title: Spreadsheet Tools (Hands on)

Course Code: CS-126	Course Category: Open Elective Course (OE)
Course Title: Spreadsheet Tools (Hands on)	Type: Theory
Total Contact Hours: 30 (2/week)	Course Credits: 02
College Assessment (CA) Marks: 20 Marks	University Assessment (UA): 30 Marks

Course Objectives:

- Construct, modify, and print a professionally designed and formatted spreadsheet.
- Create and manipulate various types of charts and enhance charts with drawing tools.
- Create and use basic formulas and functions.
- Create and use complex and advanced formulas and functions from each category of functions provided by Excel.

Course Outcomes: After completion of the course, students will be able to

CO No.	со	Cognitive level
BCS126C.1	Make meaningful representation of data using formatted	4
	spreadsheet	
BCS126C.2	Draw analysis using various types of charts and enhance	4
	charts with drawing tools	
BCS126C.3	Create and use basic formulas and functions.	6
BCS126C.4	Create and use complex and advanced formulas and	6
	functions from each category of functions provided by	
	Excel.	

Course Content:

Unit 1:The Excel environment and working with data

(08 L, 12 M)

- 1.1 Navigating a worksheet
- 1.2 Spreadsheet terminology
- 1.3 Entering and editing text and values
- 1.4 Entering and editing formulas
- 1.5 Saving and updating workbooks
- 1.6 Moving and copying data
- 1.7 Moving and copying formulas
- 1.8 Inserting and deleting ranges, rows, and columns
- 1.9 Cell comments

Unit 2: Using functions

(08 L, 12 M)

- 2.1 Entering functions
- 2.2 AutoSum

- 2.3 Other common functions
- 2.4 Create an outline and consolidate data
- 2.5 Create subtotals in a list
- 2.6 Use multiple subtotal functions SUBTOTAL, SUMIF
- 2.7 Create custom views to save different sets of worksheet display and print settings

Unit 3: Range names, Filter data and Charts

(08 L, 12 M)

- 3.1 Define and apply cell and range names
- 3.2 Use names in Formulas
- 3.3 Filter data based on complex criteria
- 3.4 Use conditional filters
- 3.5 Copy filtered results to another range
- 3.6 Chart basics
- 3.7 Pie Chart
- 3.8 Bar Chart

Unit 4: Selected Functions and Pivot Tables

(06 L, 09 M)

- 4.1 Using IF and SUMIF functions to calculate a value based on specified criteria
- 4.2 Use ROUND function to round off numbers
- 4.3 Use VLOOKUP to find values in worksheet data
- 4.4 Use HLOOKUP to find values in worksheet data
- 4.5 Prepare data in a table format and name thetable
- 4.6 Create a PivotTable for analyzing

Reference Books:

- 1. "Microsoft Excel 365 Bible", 1st Edition by Michael Alexander, Dick Kusleika, ISBN-10-1119835100, Publisher-Wiley
- 2. "Excel 2019 All-in-One For Dummies", 1st Edition by Greg Harvey, ISBN-10-111951794X, Publisher-For Dummies
- 3. "Excel Dashboards and Reports", 2nd Edition by John Walkenbach , Michael Alexander, ISBN-10-9781118490426

Course Code: CS-127

Course Title: Linux Fundamentals

Course Code: CS-127	Course Category: Core Course (SEC)
Course Title: Linux Fundamentals	Type: Theory
Total Contact Hours: 30 (2/week)	Course Credits: 02
College Assessment (CA) Marks: 20	University Assessment (UA): 30 Marks

Marks

Course Objectives:

- To familiarize students with Linux operating system and its features
- To understand the Linux System Architecture and shells
- To learn working with Files
- To learn basic Linux commands
- To understand the basic principles of programming and writing shell scripts
- To familiarize students with Managing User Accounts and Groups
- To familiarize students with working in X Windows and GNOME

Course Outcomes:

CO No.	со	Cognitive level
BCS127C.1	Understand Linux operating system and its features	2
BCS127C.2	Apply basic Linux commands to work with File system	3
BCS127C.3	Analyze the Linux System Architecture and classification of shells	4
BCS127C.4	Write shell scripts to apply principles of programming to work with OS.	6
BCS127C.5	Create and Managing User Accounts and Groups, Familiarize with X Windows and GNOME	6

Course Content:

Unit 1: History and Development of Linux

(08 L, 12 M)

- 1.1 A Brief History of Linux
- 1.2 Features of Linux
- 1.3 Applications of Linux
- 1.4 Components of Linux System
- 1.5 Acquiring and Using Linux-Linux Software, Linux as Free Software
- 1.6 Examining Linux Distributions
- 1.7 System Access-Logging In, Logout, Shutdown and Using Remote Linux System
- 1.8 Understand the Linux System Architecture
- 1.9 Classification of Linux Shell-Bourn Shell (sh), Shell (csh), Bourn Again Shell (bash), Korn Shell (ksh), Other Shell

Unit 2: Working with Files and using Linux Commands

(08 L, 12 M)

- 2.1 Creating and Viewing File-Using The vi Editor Using Other Editor (ex-emac, etc)
- 2.2 File Operations- Copying and Deleting Files, Moving and Renaming Files
- 2.3 Creating Files and Symbolic Links, Redirection.
- 2.4 What is Linux Command? How to Execute a Linux Command?
- 2.5 Linux Commands su, pwd, cd, echo, cal, clear, man, xman, cat, more, less, ls, find, grep, tar, gzip, kill, wildcards * and?

Unit 3: Writing Simple Shell scripts

(06 L, 09 M)

- 3.1 How to write and execute Shell Script
- 3.2 Operators in Linux
- 3.3 Control Structures- if, if-else, elif, fi, case statement
- 3.4 Looping-while, until, for loop
- 3.5 Shell Scripts

Unit 4: Create and Managing Users, Working In X Windows and GNOME

(08 L, 12 M)

- 4.1 Introduction
- 4.2 Purpose of Different User Account and Group
- 4.3 Creating and Managing Users and Groups
- 4.4 Introduction to X-windows and GNOME
- 4.5 Comparison of Microsoft Windows and X-windows
- 4.6 X-servers, Window Manager and Desktop Environment
- 4.7 The GNOME Panel, GNOME Main Menu
- 4.8 X-Windows Utilities

Reference Books:

- 1. Mc callister, SuseLinus-10, Pearson Education, 2006.
- 2. Ball, Using Linux, PHI, 1998.
- 3. Das, Unix: Concepts And Applications (4thEd), TMH, 2006.
- 4. Foster Johnson, Welch, Anderson, Beginning Shell Scripting, Wiley India (Wrox), 2006.
- 5. Neil Mathew, Richard Stones, Beginning Linux Programming (3rdEd), Wiley India (Wrox), 2006.
- 6. Peterson, Linux: Complete Reference(5thEd), Peterson, TMH.

Course Code: CS-128

Course Title: Lab on Linux Fundamentals

Course Code: CS-128	Course Category: Core Course (DSC)
Course Title: Lab on Linux Fundamentals	Type: Practical
Total Contact Hours: 30 (2/week)	Course Credits: 02
College Assessment (CA) Marks: 20 Marks	University Assessment (UA): 30 Marks
Course Objectives:	

- Provide knowledge about how to use Linux operating system and its features.
- To provide hands on for working with Files
- How to work with basic Linux commands
- To understand the basic principles of programming and writing shell scripts
- To make able to students with Managing User Accounts and Groups
- To familiarize students with working in X Windows and GNOME

Course Outcomes:

CO No.	со	Cognitive level
BCS128C.1	Understand Linux operating system and able to use its	3
	features	
BCS128C.2	Analyze the Linux System Architecture and classification of	4
	shells	
BCS128C.3	Write shell scripts to apply principles of programming to	6
	work with OS.	
BCS128C.4	Create and Managing User Accounts and Groups, X	6
	Windows and GNOME	

Course Content:

- Demonstration of System Access-Logging In, Logout, Shutdown and Using Remote Linux System.
- 2. Creating and Viewing File(cat), Using The vi Editor
- 3. File Operations- Copying (cp) and Deleting (rm) Files, Moving (mv) and Renaming (ren) Files, Creating Files and Symbolic Links (ln), Redirection (|, >, >>).
- 4. Demonstration of Linux Commands: su, pwd, cd, echo, cal, clear, man, xman, more, less, ls, wildcards * and?
- 5. Shell script for addition of two number/ Number is Positive or Negative/ Number is ODD or EVEN
- 6. Shell Script for demonstration of if else, etc
- 7. Shell Script for demonstration of while, for loop
- 8. Shell Script to demonstrate use of case statement
- 9. Practical for Creating and Managing Users, Creating and Managing Groups
- 10. Demonstration of Working in X Windows: Gedit, Gcalc, Xclock, Choosing and Changing Desktops & properties etc.